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1. Introduction

Euclidean brane instantons (see e.g. [1]) provide the leading non-perturbative contribution

to several important quantities in string compactifications. For instance D-brane instan-

tons in type II compactifications (or F/M-theory duals) have led to (in some cases very

explicit) proposals to lift 4d moduli which are otherwise flat directions of the theory in

the classical supergravity approximation. In addition, instantons arising from euclidean

Dp-branes wrapped on (p + 1)-cycles (henceforth Ep-branes), intersecting the 4d spacefill-

ing D-branes yielding the gauge group, provide the leading contribution to perturbatively

forbidden superpotential couplings of the relevant 4d effective gauge theory [2, 3] (see

also [4 – 6] and [7 – 14] for related applications).
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One of the main problems in improving the understanding and potential applications

of these instantons lies in the difficulty in constructing explicit models where the instantons

have the appropriate number of zero modes to lead to contributions to the non-perturbative

superpotential. In particular, the non-vanishing of such contributions depends on the

presence of non-trivial couplings for all fermion zero modes (charged or uncharged under

the 4d gauge group) except the two 4d N = 1 Goldstinos. These couplings are difficult

to evaluate in general Calabi-Yau compactifications, or even for exactly solvable but non

free-field CFTs. Such couplings can however be explicitly discussed in compactifications on

toroidal orientifolds (see e.g. [15, 16] for explicit examples), or for instantons from branes

wrapped on compact cycles in systems of D-branes at singularities (see e.g. [6, 17 – 21]).

In this paper we focus on instanton effects from euclidean branes wrapped on non-

compact cycles in local models of D3/D7-branes at singularities. More specifically we con-

sider effects from E3-brane instantons wrapped on holomorphic 4-cycles passing though the

singular point (and thus intersecting the 4d spacefilling D-brane system). Such instanton

effects become physical when the local model is embedded in a full-fledged compactification,

but many of its properties (and in particular the structure of 4d charged fields involved

in the effective vertex they produce) depend crucially only on the local model (plus some

mild assumption about behaviour at infinity). Note that E3-brane instantons may not be

the only instanton effects in such global compactifications, but they are the most generic,

in the following sense. For instance, E5-branes wrapped on the whole internal space, and

carrying stable holomorphic world-volume gauge bundles, provide additional instantons.

However, note that in general such instantons are BPS only at particular loci in moduli

space, away from which they cross lines of marginal stability We thus stick to the simpler

situation of E3-brane instantons, and to compact examples where they are BPS all over

the moduli space.

We moreover concentrate on the case of abelian orbifold singularities, given the simple

and powerful CFT description of the instanton zero modes and their interactions, and the

relative ease to embed such models (at least for low order orbifolds) in toroidal orientifold

compactifications. Similar ideas can be applied for other non-orbifold but toric singularities,

using dimer diagram techniques, as we sketch in an appendix.

A further motivation to consider this kind of system is phenomenological. Indeed, one

of the most attractive possibilities to embed the Standard Model in string theory is via

systems of D-branes at singularities, since they naturally lead to world-volume chiral gauge

theories. In fact, several realizations of semirealistic models have been proposed [22 – 27].

It is therefore a natural question to consider the structure of field theory operators that

can be induced by instanton effects in this setup. As we explain in next section, the fact

that the most promising singularities leading to semi-realistic models are not orientifold

singularities implies that the only D-brane instantons contributing to the superpotential

are (except for brane instantons with gauge theory interpretation) those wrapped on non-

compact cycles passing through the singularity, and through orientifold planes away from

the latter.

We provide the general formalism to study such effects for general supersymmet-

ric abelian orbifold singularities, and illustrate it with a set of explicit examples lead-
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ing to a rich pattern of physical phenomena (supersymmetry breaking, generation of

mass terms,. . . ) and interesting superpotential couplings forbidden in perturbation theory

(quark and/or lepton Yukawa couplings, Higgs µ-terms, etc). In addition, we also describe

possible effects of brane instantons in (non-tachyonic) non-supersymmetric orbifold models,

which have not been described in the literature, and argue that they generate potentials

for the 4d charged scalars.

There is another interesting aspect to this class of E3 instantons. It has been recently

pointed out in [28] that instantons with additional neutral fermion zero modes may still

contribute to a non-perturbative superpotential if the extra zero modes are lifted by another

instanton. In particular we find that E3 instantons may combine with standard E(−1)

gauge instantons to induce novel superpotential couplings and provide an explicit compact

Z3 orientifold example in which this phenomenon takes place.

The paper is organized as follows. In section 2 we describe the general features of

E3-brane instantons for systems of D3/D7-branes at C
3/ZN local singularities, in par-

ticular we provide the explicit description of the structure of their charged and neutral

zero modes. In section 3 we discuss the instanton action and its coupling to RR fields,

and show the gauge invariance of the instanton effective vertex under gauge transforma-

tions of the 4d spacefilling gauge D-branes. In section 4 we provide explicit examples of

non-compact and compact models and interesting instanton effects, including examples

of phenomenologically interesting couplings in semi-realistic examples of [22]. We also

describe there a realization of the new phenomenon of superpotential contributions from

multi-instantons [28]. We also discuss the generation of Fayet SUSY breaking induced

by E3 instantons. Section 5 describes the novel situation of instanton effects for systems

of D-branes at (non-tachyonic) non-supersymmetric singularities. Section 6 contains our

final remarks. Appendix A describes the computation of the 4d field theory on D3/D7-

brane systems at orbifold singularities. In appendix B we present a compact Z7 toroidal

orientifold example. Appendix C sketches the generalization of the instanton effects from

E3-branes on 4-cycles to general toric singularities, based on dimer diagram techniques.

2. Euclidean E3-brane instantons at C3/ZN singularities

2.1 Generalities

In this article we consider euclidean D-brane instanton effects on systems of D3- and D7-

branes at R
6/ZN singularities. We summarize the basic formalism to compute the spectrum

and interactions on the world-volume of D3- and D7- branes at Abelian singularities in

the appendix (see [22] for more details and references). We will mostly concentrate on

the case of supersymmetric singularities, and on euclidean instantons contributing to the

non-perturbative superpotential.1 Later on we will briefly discuss the case of euclidean

instantons at N = 0 non-supersymmetric singularities, and comment on the resulting non-

perturbative interactions.

1We denote Ep a (p + 1)-dimensional euclidean D-brane wrapped on a (p + 1)-cycle.
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In order to contribute to the superpotential, one has to focus on BPS D-branes. Hence

there are two classes of euclidean D-brane instantons which can contribute to the superpo-

tential in these systems, E(−1) and E3 Euclidean branes.2 When such euclidean branes

wrap the same cycle and have the same Chan-Paton transformation properties as some of

the 4d-spacefilling branes in the background, they can be interpreted as gauge instantons.

Otherwise they correspond to genuine stringy effects, without field theory interpretation,

which we hence dub stringy instantons. We will be most interested in the latter.

E(−1) instanton induced superpotentials have been discussed mostly for the case of

the conifold or the orbifolded conifold in [6, 17, 18, 20, 21] (these can be regarded as bound

states of E3-E1-E(-1) on compact cycles in the blownup limit). As emphasized in [18, 16, 8],

both E(−1) and E3 stringy instantons on Calabi-Yau compactifications generically have at

least four neutral fermionic zero modes, and thus cannot contribute to the superpotential.

The two extra fermion zero modes are Goldstinos of an accidental enhancement of N = 1

to N = 2 in the Ep-Ep open string sector. A simple way (and seemingly the only one in

perturbative models) to reduce the number of universal zero modes to two is to consider

instantons mapped to themselves under the orientifold action. For a O(1) CP symmetry one

obtains the required number of zero modes in that sector (clearly, there may be additional

fermion zero modes in other sectors).

Focusing on systems of D-branes at singularities, for a E(−1) instanton to induce

a non-perturbative superpotential term involving charged chiral multiplets from the D-

branes at the singularity, the E(−1) must also sit at the singularity, which thus must also

be fixed under the orientifold action (thus, it is an orientifolded singularity). This is the case

considered e.g. in [6, 17, 21]. In orbifold language, the instanton corresponds to a fractional

E(−1)-brane, with Chan-Paton phases not associated to any of the background D3-branes

(i.e. corresponding to an unoccupied node in the quiver). Geometrically, it corresponds

to Euclidean E1-brane wrapping a collapsed 2-cycle at the singularity on which no 4d-

spacefilling brane wraps. These instantons give rise generically to genuine stringy effects.

Non-perturbative effects have been suggested to play a key role in semi-realistic string

models of particle physics, in order to generate interesting couplings which are absent in

perturbation theory, due to perturbatively exact global U(1) symmetries [2, 3, 8]. There

exist systems of D3/D7-branes at singularities leading to such semi-realistic models [22 –

27]. It would be interesting to study the possible appearance of non-perturbative effects

from stringy instantons in this class of models. However, such models are obtained for

branes systems sitting at orbifold (not orientifold) singularities. Indeed, as argued in [22],

models from D3-branes sitting at orientifold singularities suffer from a generic difficulty in

yielding realistic spectra. The problem arises because the orientifold projection removes

from the spectrum the diagonal U(1) which is always anomaly free and is crucial to obtain

correct hypercharge assignments. This means that in the class of realistic models based on

branes at singularities not fixed under the orientifold action, E(−1) instantons can never

give rise to non-perturbative superpotentials involving phenomenologically relevant chiral

2Here we refer to the dimension of the brane as described in the parent space. Since we work with

fractional branes, in the quotient space they in general correspond, in the geometric large volume limit, to

E3/E1/E(−1) bound states.
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fields like those of quarks and leptons.

This caveat is nicely avoided by E3-brane instantons, wrapping a 4-cycle passing

through the singularity. The E3-brane can be mapped to itself by an orientifold action

leading to orientifold planes away from the relevant singularity. The orientifold will thus

map the relevant singularity to a mirror image singularity. The net effect is that the sys-

tem at the singularity is insensitive to the orientifold action and can reproduce one of the

semi-realistic models of [22 – 24, 27]. The instanton is fixed under the orientifold action,

and can have O(1) CP symmetry and lead to just two fermion zero modes. Since it also

intersects the D-branes at the singularity, the corresponding superpotential can lead to

interesting SM operators.

From the phenomenological perspective this is one of the motivations to study the

effects of E3 rather than E(−1) instantons. Nevertheless, we will keep an open mind and

consider examples of non-perturbative effects on systems of D-branes at orientifold singu-

larities as well, even though they are less promising from the model building point of view.

It is interesting to consider the above kind of configurations from the viewpoint of the

local physics near the (non-orientifold) singularity. We have a D3/D7-brane system at a

non-orientifold singularity, and an euclidean E3-instanton wrapped on a non-compact 4-

cycle. On the E3-E3 open string spectrum, there are four fermion fields from the accidental

N = 2 susy in this sector. However, these fields propagate on the non-compact 4-cycle of

the instanton. The existence or not of fermion zero modes for the spacetime instanton is

determined, from the local model viewpoint, by the boundary conditions at infinity for

these fields. For E3-branes with O(1) CP symmetry, the boundary condition for two of

the fermion fields is that they vanish at infinity, and thus removes their corresponding zero

mode.

Given their simplicity and their general applicability, it is thus convenient to study

first the local models. As is clear form the above, one should nevertheless be careful with

the discussion of modes supported on non-compact cycles, since the corresponding zero

mode spectrum is sensitive to boundary conditions at infinity.

We thus concentrate on the effects coming from E3 instantons (see also [15, 16]). We

are going to consider euclidean 3-branes E3r located at a R
6/ZN singularity and wrapping

a 4-cycle Σr
4 transverse to the D3-branes. Our analysis here will be local and we will

assume that eventually the singularity is embedded into a compact manifold so that the

action of the instantons is finite and the D7s branes give rise to physical gauge bosons and

not merely to a flavour symmetry. We also assume that the E3 branes do not touch further

branes which could give rise to extra zero modes to be included in the analysis. Compact

examples with these characteristics will be provided later on.

We consider instantons E3r, r=1,2,3 which wrap a 4-cycle transverse to the rth complex

plane (thus defined by zr = 0). The CP factors for these E3r will be of the form (see the

appendix for notation)

γθ,E3r = diag (Ivr
0
, e2πi/N Ivr

1
, . . . , e2πi(N−1)/N Ivr

N−1
) (2.1)

up to an overall phase which depends on the existence or not of vector structure [29].

In order to get the correct number of neutral zero modes for the instantons, eventually
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Figure 1: Pictorial view of the instanton E3r and D7s,t-branes going through a singularity where

a stack of D3-branes are located. The E3r − D3 and E3r − D7s,t fermionic zero modes (ηr and

ηrs,ηrt respectively) are also shown.

we will be interested in an orientifold projection giving rise to an O(1) CP symmetry.

Since orientifolds act by conjugating the Chan-Paton phases (see [30, 31] for a few C
2/ZN

exceptional cases where it does not) this is obtained for vr
0 = 1, vr

i = 0 with i 6= 0. This

already implies that appropriate instantons exist only in models with vector structure,

where the overall phase mentioned above is unity and the Chan-Paton matrix is exactly as

in (2.1). This already excludes a large class of models, in particular most of the even order

orbifolds (compact even order orbifolds are difficult to construct due to the very stringent

RR tadpole cancellation conditions [32], see however [33, 34]).

It is easy to show that for orbifolds acting on all three complex planes (i.e. not of the

form C
2/ZN ×C, the E3-E3 open string sector reduces to a universal sector. It always con-

tains four bosonic zero modes, corresponding to the 4d translational Goldstones associated

to the instanton position in 4d Minkowski space. The fermionic zero mode content depends

on the orientifold action on the instanton, ss discussed in [8]: for U(1) instantons, there

are 4 fermion zero modes; for O(1) instantons, there are 2 fermion zero modes; for Sp(2)

instantons, there are 2 singlet fermion zero modes, and 6 fermion zero modes transforming

as two triplets. Since the possible mechanisms to lift the additional zero modes in the

U(1), Sp(2) cases require ingredients beyond those in our configurations, we will focus on

the case of O(1) instantons.

Let us now discuss in turn the different types of charged fermionic zero modes which

will appear in a configuration with both D3- and D7s-branes. For the CP matrices of these

branes we use the notation defined in the appendix. A pictorial view of the zero modes is

given in figure 1.

2.2 E3-D3 instanton zero modes

This sector is fully localized in the non-compact orbifold dimensions, so it is insensitive to

boundary conditions at infinity.
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Open strings in the E3r-D3 sector give rise to no bosonic zero modes. This is due

to the fact that there are altogether 8 space-time components with mixed DN boundary

conditions, which lift up the zero energy of the bosonic states. On the other hand there is

a fermionic state from the R-state in the complex direction with DD boundary conditions.

The gauge quantum numbers and multiplicities of these fermions is totally analogous to

the ones of the D7r-D3 states (see eq. (A.5) in the appendix), i.e.

D3 − E3r,E3r − D3 Fermions
∑N−1

i=0 [ (ni, v
r
i− 1

2
ar

) + (vr
i , ni− 1

2
ar

) ] ar even
∑N−1

i=0 [ (ni, v
r
i− 1

2
(ar+1)) + (vr

i , ni− 1

2
(ar+1)) ] ar odd

(2.2)

where again r denotes the complex plane transverse to the E3r instanton and ar is defined

in appendix A. There will be couplings between two such fermionic zero modes η3−E3r ,

ηE3r−3 and D3 − D3 chiral superfields of the form (see eq. (A.6))

N−1
∑

i=0

Tr (Φr
i,i+ar

η3−E3r

i+ar ,i+ ar
2

ηE3r−3
i+ ar

2
,i
) . (2.3)

2.3 E3-D7 instanton zero modes

If there are D7s branes which are passing through the singularity the E3r instantons will

necessarily intersect them and there will generically be further instanton fermionic zero

modes. The structure of the intersection and of the possible zero mode depends on the

4-cycles wrapped by the E3- and the D7-branes. We are going to consider here r 6= s

where the intersection is on the complex plane transverse to the directions r, s (namely

zr = zs = 0) and we briefly discuss the r = s case below. The worldvolumes are non-

compact, hence the actual existence of zero modes depends on boundary conditions at

infinity. Equivalently, if we consider that the singularity is eventually embedded into a

CY manifold, the instanton and D7-branes have finite volume on the CY, and the E3-D7

spectrum depends on the details of the compactification. To give a concrete example, one

may consider that in a global toroidal embedding of the model there may be Wilson lines

on the D7-brane along the relevant 2-torus, such that certain of these E3-D7 zero modes are

projected out. Likewise, the E3 instanton may have also Wilson lines which may project

out some E3-D7 states. Note that in the case of of O(1) instantons one can still have a

discrete Z2 Wilson line, which automatically removes all E3-D7 zero modes.

In studying the local model, we consider this not to be the case, and will abuse language

by denoting the E3-D7 fields as zero modes. Thus we will need to remove these fields if

necessary in concrete examples which involve ingredient projecting out such zero modes

(like the Wilson lines mentioned above).

The E3r − D7s sector has 8 space-time dimensions with DN boundary conditions.

Thus there are no bosonic zero modes. Since there is a twisted complex plane with NN

boundary conditions, the multiplicities and quantum numbers of the fermion zero modes

is analogous to that of D7r − D7s systems. One thus gets fermionic zero modes given by:

D7s − E3r,E3r − D7s Fermion
∑N−1

i=0 [ (us
i , v

r
i− 1

2
at

) + (vr
i , u

s
i− 1

2
at

) ] at even
∑N−1

i=0 [ (us
i , v

r
i− 1

2
(at+1)) + (vr

i , u
s
i− 1

2
(at+1)) ] at odd

(2.4)
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with t 6= s 6= r 6= t. We will denote them ηrs , ηsr with two superindices indicating they

come from the overlap of D7s and E3r branes.

These E3r − D7s fermionic zero modes have three types of couplings to chiral fields

on 33 and 37 sectors:

• (E3r − D3)(D3 − D7s)(D7s − E3r)

This is a coupling between a chiral superfield in a D3 − D7s sector to two fermionic

zero modes from E3r − D3 and D7s − E3r respectively.

∑

r 6=s

ηr Φ(37s) ηrs (2.5)

• (E3r − D7s)(D7s − D7s)(D7s − E3r)

Let us assume that the fields in the D7s-D7s sector, which propagate on the non-

compact zs 2-plane, have boundary conditions leading to zero modes (we implicitly

make this assumption in forthcoming similar analysis). Then there is a coupling

between a chiral superfield in a D7s − D7s sector to two fermionic zero modes from

E3r − D7s and D7s − E3r respectively.

ǫrst ηrs Φ
(77s)
t ηsr (2.6)

• (E3r − D7s)(D7s − D7t)(D7t − E3r)

This is a variation of the previous one but with ηrs zero modes coupling chiral fields

in a mixed D7s − D7t sector.

ηrt Φ(7t7s) ηsr (2.7)

with r 6= s 6= t 6= r.

Note that in the case of the last two couplings, a vev for the chiral fields Φ
(77s)
t

and/or Φ(7t7s) would give mass to E3r − D7s fermion zero modes. In such a case

one has to integrate out appropriately those fermionic zero modes to obtain the

correct effective instanton action. Such vevs may be triggered in the presence of

non-vanishing FI-terms for U(1)’s living on the worldvolume of D7-branes (in fact

this is equivalent to the appearance of an insertion of the corresponding field in the

effective 4d superpotential, taking a constant value if the field acquires a vev).

Similar analysis can be carried out for r = s for different Chan-Paton actions for E3-

and D7-branes, namely for E3- and D7-branes which wrap the same 4-cycle, but carry

different world-volume gauge bundles. In that case one can check there are again no

massless bosonic zero modes but three copies of fermionic zero modes (E3r − D7r)i,

i = 1, 2, 3. They give rise to couplings to (D7r −D7r)j as well as (D3−D7r) D = 4

fields analogous to those just discussed. We will not discuss them in more detail here.

Finally, as we said, the case of overlapping E3- and D7-branes with same Chan-Paton

action correspond to brane instantons with interpretation as standard gauge theory

instantons.
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3. Action and charges of the instantons

The action of these instantons has two pieces corresponding to a global piece which depends

on the 4-cycle Σr
4 wrapped by the E3r (which depends on untwisted Kahler moduli Ti)

and a local piece depending on the twisted moduli φk at the singularity. Thus the classical

action of the instanton should have the two pieces

SE3r = Sunt
E3r + Stwist

E3r = T r
Σ4

+

N−1
∑

k=0

dr
k φk (3.1)

Here T r will be some linear combination of untwisted Kahler moduli characteristic of the

cycle of the E3r in the bulk. Its real part is controlled by the volume of the wrapped

toroidal 4-cycle. The φk are closed string twisted moduli associated to the singularity. In

the orbifold configuration, the background values of the twisted moduli are zero, φk = 0, so

the instanton amplitude is controlled by ReT r. The coefficients dr
k will be computed below.

As we have just seen, there are additional pieces in the action coming from couplings among

bifundamental 33 chiral fields Φαβ
r and the E3r −D3 zero modes ηα

i , ηβ
j of the general form

S′
E3r =

∑

i,j,r

cr
ij ηα

i Φαβ
r ηβ

j (3.2)

Integration over the fermionic zero modes gives rise to a non-perturbative superpotential

e−SE3r

∫

[dηα][dηβ ] e−
P

i,j,r cr
ij ηα

i Φαβ
r ηβ

j ∝ e−SE3r det(Φr) . (3.3)

Let us now check that this induced operator is invariant under the gauged U(1) symmetries

on the 4d spacefilling D3-branes (Note that these arguments are valid even if the instanton

has additional zero modes, and thus leads to a higher F-term in the 4d effective action).3

As shown in [35] it is only the twisted moduli which are shifted under the U(1) gauge

symmetries living on the D3-,D7-branes. In particular consider a stack of D3-branes living

at a R
6/ZN singularity. Consider the U(1)a group associated to one of the U(na) factors

with CP matrix λa. Following the rules in [36], it was shown in [35] that there are couplings

N−1
∑

k=0

√
ck Tr( γD3

θk λa) × (Fa ∧ Bk) (3.4)

where Bk are RR 2-forms in the kth twisted sector, thus associated to the singularity.

The twist CP matrix γD3
θk is defined in Appendix A. The Bk are Poincare dual to scalars

bk = Imφk which then transform under a U(1)a gauge transformation of parameter Λ(x)a
like

bk −→ bk +
√

ck Tr( γD3
θk λa) Λ(x)a (3.5)

3This kind of computation is a particular case of the general argument in the appendix of [3], which

applied to general systems of D-branes and instantons. From this viewpoint, the discussion below amounts

to a careful computation of the couplings of the branes to the RR fields in the orbifold CFT.
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The value of the ck coefficients is given below. Now, the twisted piece of the action of

the E3r instanton may be obtained from the corresponding DBI+CS action. In particular

the coupling to the imaginary part of the twisted field is topological, and may be inferred

from the known couplings of the F ∧ F term of a D7r brane to the twisted RR fields bk.

This is because a 4d F ∧ F background on a D7r-brane must carry the same topological

couplings as an E3r-brane. Notice however that the D7-brane is in general not present in

the configuration, and we merely use it as a trick to obtain the couplings, which can be

computed by other techniques. The couplings for the D7-branes were also found in [35] to

be given by

1

N

N−1
∑

k=0

√
ck Tr( (γD7r

θk )−1 λ2
i ) bk × (Fi ∧ Fi) (3.6)

Including also the real part of φk, mentioned above, one then has for the E3r instanton

action

SE3r = T r
Σ4

+
1

N

N−1
∑

k=0

√
ck Tr( (γE3r

θk )−1 (λb)
2) φk (3.7)

with λb a CP matrix of the E3r. One can then compute how the instanton action transforms

under a U(1)a symmetry. For a E3r instanton transverse to the r-th complex plane one

has [35]

ck = 2 sin(πkar/N) = −i ( α
kar
2 − α− kar

2 ) (3.8)

with α = exp(i2π/N). The coefficients
√

ck of the coupling of the D-branes to the RR

fields can be obtained by factorization of a cylinder diagram [37].

With the CP γθk matrices defined above one then obtains:

SE3r −→ SE3r + i
navb

N

N−1
∑

k=0

ck αak α−bk Λ(x)a (3.9)

= SE3r +
navb

N

N−1
∑

k=0

( αk(ar
2

+a−b) − αk(− ar
2

+a−b) ) Λ(x)a (3.10)

= SE3r + navb (δb,a+ ar
2

− δb,a− ar
2

) Λ(x)a (3.11)

Given the above noted relation between E3r-branes and D7r-brane instantons, ie 4d F ∧F

backgrounds on D7-branes, this computation is quite analogous to the way the Green-

Schwarz mixed anomaly cancellation takes place between a U(1) from D3 branes and

gauge groups from D7’s. Therefore, the appearance of the Kronecker deltas, which count

the number of multiplets in the mixed D7/E3-D3 sector, is not a surprise.

One can now easily check that the charge transformation obtained is just opposite to

the total U(1)a charge of E3r −D3 fermionic zero modes transforming like (we are taking

ar even):

(nb+ ar
2

, v̄b) + (vb, n̄b− ar
2

) . (3.12)

This implies that the complete instanton effective vertex (3.3), which includes the expo-

nential term and the insertions of 4d fields due to the integration of charged fermion zero

modes, is indeed gauge invariant.
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If the E3r instanton intersects some D7s brane, in general its action will also transform

under U(1)’s living on the D7s branes. In general a U(1)c gauge symmetry inside a D7s

brane will couple to twisted moduli like

N−1
∑

k=0

√
ck Tr( γD7s

θk λc) × (Fc ∧ Bk) (3.13)

We are considering s 6= r (for r = s a similar discussion can be carried out) and now the

ck factor will be given by ck = 2 sin(πkat/N) with t 6= r 6= s 6= t. Thus zt is the complex

direction with NN boundary conditions in the E3r − D7s system. Now the RR twisted

fields transform with respect to a D7s U(1)c like

bk −→ bk +
√

ck Tr( γD7s

θk λc) Λ(x)c (3.14)

and ck is as indicated above. One can again repeat the analysis we made for D3-branes

and find that under a U(1)c gauge transformation the action transforms like

SE3r −→ SE3r + ucvb (δb,c+
at
2

− δb,c−
at
2

) Λ(x)c . (3.15)

One can then check that this transformation corresponds to the opposite of the overall

U(1)c charge of E3r − D7s fermionic zero modes transforming like:

(uc+
at
2

, v̄c) + (vc, ūc−
at
2

) (3.16)

which we already discussed are indeed present, see (2.4). Thus again one recovers a fully

gauge invariant operator. In the presence of D7s branes though the induced superpotentials

will involve chiral fields from all 33, 37 and 77 sectors, as we will see in the specific examples.

Note that the superpotential will in general be induced only if the number of universal

neutral fermion zero modes of the E3r instanton is two, providing us for the superspace

measure. This is guaranteed if there is in addition an orientifold projection and the instan-

ton has an O(1) CP factor. In this connection note that all the above expressions were

obtained for the case of branes at orbifold (not orientifold) singularities. The same expres-

sions may be used for the orientifold case simply recalling the mapping between branes

with αk and αN−k CP factors upon the orientifold action.

4. Applications

4.1 A local SU(3)c × SU(3)L × SU(3)R model from D3-branes at a Z3 singularity

Consider the simplest case, in which no D7s branes are present and we just have a stack

of D3 branes at a singularity. Then twisted RR tadpole conditions dictate (if the D3’s

are away from orientifold planes) that Trγθk,3 = 0 (for all twists θk with the origin as

only fixed point). The gauge group has then the structure ΠN−1
i=0 U(n) with Nn the total

number of D3’s. A phenomenologically interesting example is the case with N = n = 3

in which we sit at a Z3 singularity and the gauge group is U(3)c × U(3)L × U(3)R. This

structure contains the SM gauge group and it has been termed ’trinification’ in the unified
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model-building literature [38]. There are three generations with chiral multiplets from the

33 sector transforming like

3(3, 3̄, 1) + 3(3̄, 1, 3) + 3(1, 3, 3̄) (4.1)

These three multiplets (in 3 copies) contain respectively the left-handed quarks, right-

handed quarks and the lepton/Higgs fields (plus additional vectorlike leptons). Now, the

perturbative superpotential is given by

W =
3
∑

r,s,t=1

ǫrst (3, 3̄, 1)r(3̄, 1, 3)s(1, 3, 3̄)t . (4.2)

Note that, with the Higgs multiplets inside (1, 3, 3̄), this includes some Yukawa couplings

for the quarks. However there are no lepton Yukawa couplings4 since they would require the

presence of (1, 3, 3̄)3 couplings, which are forbidden by the U(1)L×U(1)R gauge symmetry.

Let us assume that there is a E3r which has O(1) CP symmetry and goes through this

Z3 singularity. It will have its CP factor =1. The D3 twist CP matrix will be

γθ,3 = diag (I3, αI3, α
2I3) (4.3)

Take for definiteness ar = −2 then there are E3r − D3 zero modes transforming like

ηr = (1, 1, 3) ; η̄r = (1, 3̄, 1) (4.4)

which have couplings to the r-th lepton chiral field

ηr (1, 3, 3̄)r η̄r . (4.5)

Upon integration of these charged zero modes a superpotential coupling

W r
leptons = e−SE3r ǫabcǫdef (1, 3a, 3̄d)r(1, 3b, 3̄e)r(1, 3c, 3̄f )r (4.6)

is obtained for the r-th generation of leptons. From eq. (3.11) one obtains

SE3r −→ SE3r + 3ΛU(1)L
− 3ΛU(1)R

(4.7)

so that indeed the operator is fully gauge invariant. Instantons E3s transverse to the

other two complex planes would give rise to leptonic Yukawa couplings for the other two

generations. This is a simple example of how this class of instantons may give rise to super-

potential couplings of phenomenological interest. Note that these couplings are presumably

suppressed with respect to the quark one, but need not be negligibly small. Indeed, the SM

gauge couplings in this model are given by the inverse of the real part of the 4-dimensional

dilaton field S (plus a twisted moduli piece analogous to the second term in eq. (3.7) ).

These are totally independent from the instanton action (3.7) which is rather controlled by

a combination of untwisted Kahler moduli T r which may be relatively small without any

phenomenological constraint dictated by the observed values of the SM couplings.

4The absence of some perturbative either quark or lepton Yukawa couplings is a quite general property

in semirealistic models of branes at singularities. See the left-right symmetric example in section 4.5.
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4.2 A global tadpole free GUT-like example

Our previous example was a local model from D3-branes at a singularity. We would like

now to show in a simple example how the generation of open string superpotentials can take

place in simple, globally consistent (RR tadpole free) compact models. We will take the

simplest compact Type IIB 4-D orientifold which one can build, a Z3 orientifold with O3-

planes [39, 40] (for a discussion of D-brane instantons in the Z3 orientifold, with a different

distribution of D-branes, see [15]). Similar effects should be found at more complicated

toroidal orientifolds.

Let us consider type IIB on the T 6/Z3 orbifold, modded out by the orientifold action

Ω(−1)FL R1 R2 R3, with Ri being a reflection on the ith plane. There are 64 orientifold

three-planes (O3-planes), which are localized at points in the internal space. To cancel

their untwisted RR charge we need a total of 32 D3 branes. There are also 27 orbifold

fixed points which may be labeled by integers (m,n, p), m,n, p = 0,±1. Among these 27

points, only the origin (0, 0, 0) is fixed under the orientifold action, hence it is an orientifold

singularity. The cancellation of tadpoles at this point requires

3 Tr γθ,3 + (Tr γθ,7 − Tr γθ,7̄) = −12 (4.8)

In our case with no D7-branes present the condition is Tr γθ,3 = −4. An SU(6) GUT model

may be constructed in the following way. We can locate 14 D3-branes at the orientifold

plane at the origin with CP twist matrix

γθ,3 = diag (αI6, α
2I6, I2) (4.9)

and the remaining 18 D3 e.g. in the bulk (e.g. in 3 orbifold/orientifold invariant groups of

6 D3 branes), away from the origin in any of the tori. The orientifold operation exchanges

D3-branes with CP factors α and α2. The gauge group is U(6)×O(2) with chiral fermion

content

3(15, 0) + 3(6,+1) + 3(6,−1) . (4.10)

These representations decompose as 15 = 10 + 5 and 6 = 5 + 1 under the SU(5) subgroup

of SU(6), so the model contains three standard SU(5) generations 10 + 5 and three sets

of 5 + 5 Higgs fields. With the usual SM embedding in SU(5), the model has lepton and

D-quark Yukawa couplings from quiver couplings of the form (15, 0)(6, 1)(6,−1). However

U-quark Yukawa couplings would be contained in 151515 couplings which are perturbatively

forbidden by the U(1) symmetry.

Now these compact orientifolds admit BPS euclidean branes E3r which wrap two 2-

tori and are transverse to the r-th torus. If they sit at the origin the projection will be

such that, if γθ,E3r = 1, the CP symmetry will be O(1) and hence the number of neutral

instanton zero modes will be adequate to create a superpotential.5 There is one multiplet

5These E3r instantons will in general contain in their worldvolume other orbifold fixed points without

D3-branes. This means that the instanton action will also contain pieces involving these other twisted fields.

However the latter are inert under the U(1) transformations of the D3-branes at the orientifold plane and

hence those extra pieces do not play any role in our discussion.
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of charged fermion zero modes for each E3r

ηr
a = (6a, 0)

r (4.11)

coupling to the antisymmetric chiral fields Φr = 15
r

like

ηr
aη

r
bΦ

r
ab . (4.12)

Upon integrating over zero modes a cubic superpotential is generated

W6 =
∑

r

e−SE3r ǫabcdefΦr
abΦ

r
cdΦ

r
ef (4.13)

which includes the U-quark Yukawas which were perturbatively absent. The instanton

action transforms like

SE3r −→ SE3r − 6ΛU(1)3 (4.14)

so that again the operator is fully gauge invariant.

Note that the size of these Yukawas will depend on the corresponding action which has

the form previously discussed (3.7) with now the T r being actually the untwisted Kahler

moduli of this orientifold. Thus the actual values of the couplings is sensitive to the overall

sizes of the different dimensions.

This GUT model is not fully realistic since as it stands it lacks the required Higgs

multiplets to do the breaking down to the SM. Still it exemplifies in a global tadpole free

model how instantons may give rise to phenomenologically interesting couplings. In the

context of the compact Z3 orientifold the generation of such terms was recently pointed out

in [16]. Instanton induced Yukawa couplings in an SU(5) model from a local intersecting

D6-brane configuration were also considered recently in [13].

Other globally consistent compact orientifold models are expected to present the same

type of instanton induced couplings. As an additional example we discuss the case of the

Z7 orientifold model in an appendix.

4.3 An example with multi-instanton superpotential

Let us consider the same Z3 toroidal orientifold, but with a different distribution of D3-

branes. It illustrates a phenomenon in [28], in which instantons with additional fermion zero

modes (beyond the two required Goldstinos) can still contribute to the superpotential, if the

extra zero modes are lifted (or soaked up) by another instanton. We dub this phenomenon

”instanton symbiosis”.

Consider the same T 6/Z3 orientifold as above, and introduce a set of D3-branes at the

origin, with Chan-Paton orbifold action γθ = diag (e2πi/3I4, e
4πi/3I4). This leads to a U(4)

gauge theory with three chiral multiplets in the two-index antisymmetric representation,

and no superpotential. The remaining 24 D3-branes can be located as four stacks of bulk

D3-branes, and are irrelevant to our discussion.

Let us focus on the possible non-perturbative effects for the local configuration at

the Z3 orientifold singularity a the origin. There is an O(1) instanton, corresponding

to an euclidean D-brane filling the unoccupied node in the quiver (that is a fractional
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E(−1)-brane with Chan-Paton orbifold action γθ,E(−1). It has two neutral fermion zero

modes, and charged fermion zero modes (in 3 copies) in the fundamental of U(4), with

cubic couplings to the 4d chiral multiplets in the 6. It gives rise to a non-perturbative

superpotential of very high order in the 4d chiral multiplets, which will not interest us.

In addition, there is a U(1) instanton, arising from E(−1)-branes with Chan-Paton action

γθ,E(−1) = diag (e2πi/3, e4πi/3). It corresponds to a gauge theory instanton, so its effects are

more suitably analyzed using field theory arguments. Forgetting about the U(1), which is

massive by BF couplings, the 4d gauge theory can be regarded (since SO(6) ≃ SU(4))as

an SO(Nc) theory with Nf = Nc − 3 flavors in the vector representation [41], for Nc = 6,

hence Nf = 3. The case Nf = Nc − 3 is somewhat analogous to the case Nf = Nc + 1 for

SU(Nc) SQCD. In particular, instantons have extra zero modes beyond the two Goldstinos,

which are not lifted. These instantons do not generate a superpotential term, but rather

induce higher order F-terms, as in [42].

In addition there may be effects from O(1) instantons described by euclidean E3r-

branes. These are similar to those considered in the previous section, and lead to non-

perturbative mass terms mr ∼ Ms e−Tr for the chiral multiplets in the 6. This model and

the above discussion have already appeared in [15].

In the following we would like to have a closer look at the effects of the E3r, and

argue that they have a non-trivial effect on the gauge instantons and implement the non-

perturbative lifting of zero modes advocated in [28]. This example thus illustrates another

interesting application of E3r-brane instantons, and shows that the effects in [28] naturally

arise already in familiar toroidal orientifold models.

From the spacetime viewpoint, the mass terms induced by the E3-brane instantons

have a non-trivial effect on the dynamics of the SU(4) gauge theory. Indeed in the far

infrared one can integrate out the massive flavours and be left with a pure SU(4) theory,

which has the familiar non-perturbative gaugino condensate superpotential

W ∼ Λ′3 (4.15)

where the pure SYM scale Λ′ in the IR is related to the UV scale Λ by matching of scales

Λ9
∏

r mr = Λ′12. In our case the UV scale is Λ = Mse
−1/(9gY M2) = Mse

−S/9, where the

factor of 9 arises from the beta function (proportional to 3(Nc − 2) − Nf ), and where S is

the modulus giving the gauge coupling of the U(4) theory at high scales (essentially the 4d

dilaton, plus corrections from twisted moduli). Hence we have

W ∼
(

e−S
∏

r

e−Tr

)
1

4

M3
s (4.16)

The above argument shows that there is a non-trivial effect of the E3r instantons

on the E(−1)-brane gauge instantons, so that the latter can induce a superpotential. In

fact, this is a particular case of the non-perturbative lifting of fermion zero modes in [28],

where the E3-brane instantons induce a lifting of the additional fermion zero modes of the

E(−1)-brane instantons. The overall process corresponds to a multi-instanton process in

spacetime, where all fermionic external legs of the E(−1)-brane instanton vertex, except

– 15 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
3

two, are soaked up by the E3r-brane instanton vertex. The interpretation as a multi-

instanton process agrees nicely with the exponential dependence of (4.16) on the moduli.

Let us sketch a simplified version of the mechanism. In the simultaneous presence of

the instantons, there are fermion zero modes λr, λ̃r in the E3r-E(-1) sector. These couple

to different pairs of the extra fermion zero modes in the E(−1)-D3 sectors, which we denote

χr, χ̃r via a quartic interaction

Sinst =
∑

r

λrλ̃rχχ̃r (4.17)

Notice that the r subindex for the λ’s denotes the open string sector, while for the χ’s

it simply denotes the set of λ’s to which they couple. The above argument is somewhat

sloppy, since there are no microscopic quartic interactions in orbifolds. However they can

be regarded as effective interactions upon integrating over bosonic zero modes from open

strings between the different instantons (see [28] for details). We stick to this simplified

discussion.

Upon integrating over the fermion zero modes λr, λ̃r of the E3r-brane instantons, we

find they induce an effective interaction on the world-volume action of the E(-1)r-instanton.

δSE(−1) =
∑

r

e−Tr χrχ̃r (4.18)

So the additional fermion zero modes of the E(−1)-brane instanton are lifted. In other

words, one can pull down insertions of δSE(−1) to soak up the integrations over the fermionic

collective variables χ, χ̃. Integrating over the latter, the E(−1)-brane instanton thus leads

to a 4d non-perturbative superpotential term precisely of the form (4.16). The power of 1/4

arises from the fact that we are dealing with fractional instantons.6 One can check that the

complete superpotential is invariant under transformations of the U(1) symmetry in U(4).

This is correlated with the fact that the complete 4-instanton system has zero intersection

number (namely zero net number of chiral fermion zero modes) with the D3-branes.

A similar discussion would apply to other examples where euclidean brane instantons

have been argued to modify the infrared dynamics of gauge theory sectors e.g. [6, 17].

4.4 Instanton induced SUSY breaking

The same Z3 orientifold considered above may be used to construct a compact model in

which SUSY-breaking a la Fayet may be implemented along the lines of the recent work [21].

In the present case we locate 8 D3-branes with CP twist matrix

γθ,3 = diag (αI4, α
2I4) (4.19)

at the orientifold point at the origin. This is enough to cancel twisted tadpoles. We

then locate the remaining 24 D3-branes e.g. in the bulk (in 4 orbifold/orientifold invariant

6In more precise terms, the standard gauge theory instanton contributes to a 4d correlator involving

four pairs for fermions, out of which one can extract two-fermion correlators by clustering, as is familiar in

the description of the gaugino condensate superpotential in N = 1 pure SYM.
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groups of 6 D3 branes), away from the origin in any of the tori. The gauge group from

the branes at the origin is U(4) with three chiral fields Φr (r = 1, 2, 3) transforming like

(6,−2)r under SU(4) × U(1). There is one multiplet of charged fermion zero modes for

each E3r

ηr = (4, 1)r (4.20)

coupling to the chiral fields like

ǫabcdηr
aη

r
bΦ

r
cd . (4.21)

Upon integrating over zero modes a superpotential is generated

W6 =
∑

r

e−SE3r ǫabcdΦr
abΦ

r
cd (4.22)

which gives mass terms to the three 6-plet matter fields. These are the mass terms which

were mentioned in the previous section. Again, the actual values of the masses is sensitive

to the overall sizes of the different dimensions. Now, there is also a U(1) D-term potential

of the form

VU(1) =
1

λ

(

∑

r

−2|Φr|2 + ξ

)2

(4.23)

where ξ is a (field dependent) FI-term.7 Assume that there is some mechanism stabilizing

all kahler moduli (twisted and untwisted), so that ξ will be a fixed parameter. The structure

is now that of a variation of the Fayet-Iliopoulos mechanism for SUSY-breaking. Indeed,

minimization of the D-term requires some of the 6-plets Φr to get a vev. But such a

vev would give rise to a non-vanishing vacuum energy, due to the instanton-induced mass

terms. Hence SUSY is spontaneously broken a la Fayet. The scale of SUSY breaking is of

order:

FΦr ≃ e−SE3r
√

ξ (4.24)

with Φr the scalar with the largest instanton suppression e−SE3r . Note that this could

be used as the SUSY-breaking sector of a trinification model like that in the previous

subsection, with gauge group U(3) × U(3) × U(3) and three generations.

The present example differs from [21] in several ways. The latter considered a Z3

orbifold of the conifold singularity, where the effects come from euclidean fractional E1

instantons, rather than Euclidean E3 instantons. Our example is also a global tadpole-free

model, rather than a local one.

4.5 Yukawas and µ-terms in a Left-Right symmetric model

As we already mentioned, a typical drawback of semirealistic constructions from D-branes

at singularities is that some Yukawa couplings are perturbatively absent. We would like to

show that E3-brane instantons can cure this pathology, and provide an specific example in

a semirealistic model. Here we consider a semirealistic left-right symmetric local Z3 model.

7In fact, supersymmetry relates this to the BF coupling, discussed above, from which such FI-term is

given by ξ = 1

2

PN−1

k=0

√
ck Tr( (γD3

θk − γD3

θN−k) λa)φk.
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Matter fields Q3 QL QR QU i
1

QU i
2

B − L

33 sector

3(3, 2, 1) 1 -1 0 0 0 1/3

3(3̄, 1, 2) -1 0 1 0 0 -1/3

3(1, 2, 2) 0 1 -1 0 0 0

37r sector

(3, 1, 1) 1 0 0 -1 0 -2/3

(3̄, 1, 1) -1 0 0 0 1 2/3

(1, 2, 1) 0 1 0 0 -1 -1

(1, 1, 2) 0 0 -1 1 0 1

7r7r sector

3(1)′ 0 0 0 1 -1 0

Table 1: Spectrum of SU(3) × SU(2)L × SU(2)R model. We present the quantum numbers under

the U(1)9 groups. The first three U(1)’s arise from the D3-brane sector. The next two come from

the D7r-brane sectors, and are written as a single column with the understanding that 37r fields

are charged under U(1) factors in the 7r7r sector.

This is possibly the phenomenologically most attractive model among the ones constructed

in [22].8 Let us review it here (see [43] for further discussion).

We consider the D3-brane Chan-Paton embedding

γθ,3 = diag (I3, αI2, α
2I2) (4.25)

The corresponding tadpoles can be canceled for instance by D7r-branes, r = 1, 2, 3 with

the symmetric choice ur
0 = 0, ur

1 = ur
2 = 1. The gauge group on D3-branes is U(3) ×

U(2)L × U(2)R, while each set of D7r-branes contains U(1)2. The combination

QB−L = −2

(

1

3
Q3 +

1

2
QL +

1

2
QR

)

(4.26)

is non-anomalous, and in fact behaves as B−L. The spectrum for this model, with the

relevant U(1) quantum numbers is given in table 1. We can see that the color triplets

from the 37r sectors can become massive after the singlets of the 7r7r sector acquire a

nonvanishing vev, leaving a light spectrum really close to left-right theories considered in

phenomenological model-building, with no chiral exotics.

Although it is possible to embed this configuration in globally consistent compact

models (see section 4.3 in [22]), we will restrict to considering the local model. We will

8It is easy to show that E3-brane instantons in the alternative Standard Model-like examples also

considered in [22] lead to an unpaired set of D3-E3 fermion zero modes, which therefore lead to a vanishing

amplitude. This unpairing can be regarded as a global O(1) anomaly on the instanton world-volume, and

signals the presence of some uncanceled charge in the non-compact model. In a global compactification this

charge should cancel, which implies (regarding the instanton as a probe of discrete tadpoles, as in [44]) that

these instantons necessarily have extra charged fermion zero modes from other sources, and thus necessarily

lead to extra unwanted insertions in the 4d amplitude, thus rendering this case less interesting.
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D7
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*

D3

D3*

O3

SM
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Figure 2: Pictorial view of the geometry of the D3,D7 semirealistic orientifold model discussed in

the text. The instanton E3r pass through both the D3-branes giving rise to the SM group and an

orientifold O3 plane. The D3 and D7 branes have orientifold mirror branes D3∗, D7∗ whereas the

E3 instanton is orientifold invariant.

consider E3r-brane instantons, wrapping non-compact directions, and implicitly assume

that they are fixed under some orientifold projection in such a way that they have an O(1)

CP symmetry (see figure 2). Recall that we consider that the orientifold action does not

fix the orbifold point, but relates it (and the D3/D7-brane system) to some mirror image

Z3 singularity. The E3 will go both through the SM D3-branes and their mirrors.

The structure of charged zero modes in this model is as follows:

• E3r-D3 sector

ηr
L = (1, 2̄, 1)r(−1,0;0,0) ; ηr

R = (1, 1, 2)r(0,1;0,0) (4.27)

where the subindices show the charges under U(1)L × U(1)R × U(1)r1 × U(1)r2. Here

U(1)1,2 are the U(1)’s associated to each of the D7r branes which are present.

• E3r-D7s sector

ηrs
1 = (1, 1, 1)rs

(0,0;−1,0) ; ηrs
2 = (1, 1, 1)rs

(0,0;0,1) (4.28)

where here r 6= s.

As mentioned above, some or all these extra zero modes could be absent depending on the

boundary conditions of the D7s branes at infinity. For instance, they are automatically

absent for instantons with a turned on discrete O(1) ≡ Z2 Wilson line (a possibility easily

implemented in toroidal orientifold models). We nevertheless keep them for the moment,

with the understanding that the corresponding insertions could be absent for instantons

with a built-in mechanism to remove E3-D7 zero modes.
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Note that for fixed r, since we have s 6= r, there are altogether 2+2+2(1+1)=8 zero

modes. Now the couplings of these zero modes to the chiral fields is as follows:

Sr
charged = ηr

L(1, 2, 2̄)rηr
R + (4.29)

+
∑

s 6=r

ηr
L(1, 2, 1)sηrs

2 +
∑

s 6=r

ηr
R(1, 1, 2̄)sηrs

1 + (4.30)

+ ǫrst ηrs
1 Φ7s7s

t ηrs
2 + + ǫrst ηrs

1 Φ7s7tηtr
2 (4.31)

These zero mode couplings lead to a number of interesting 4d superpotential couplings for

chiral fields. Note that since for each E3r-brane instanton there are 8 zero modes, the

superpotentials are going to be quartic in chiral fields, we will not get directly bilinears.

This is due to the presence of the D7-branes which are required to cancel local twisted

tadpoles. In particular one gets:

• µ-terms

Such Higgs mass terms are forbidden perturbatively by the U(1) symmetries of the

theory. Instantons may generate superpotentials

W r
µ = e−SE3r (1, 2, 2̄)r(1, 2, 2̄)rΦ7s7s

t Φ7t7t
s , r 6= s 6= t 6= r (4.32)

If the singlets Φ7s7s
t ,Φ7t7t

s get a non-vanishing expectation value, this gives rise to a

mass term for the r-th Higgs multiplet. These vevs may be given without breaking

SUSY by switching on FI-terms in the U(1)’s of the D7-branes, which are given by the

twisted moduli. Note that each instanton contributes to a particular Higgs multiplet.

The masses (µ-terms) will depend both on the value of the instanton action and on

the vevs of the Φ7s7s
t fields.

An alternative to the presence of the Φ77 chiral field insertions is that the compact

model was such that there are additional projections (e.g. due to Wilson lines on

the D7-branes or a Z2 Wilson line on the E3-brane instanton) which remove some

zero modes in the E3-D7 open string sector. From the viewpoint of the non-compact

example, this would be regarded as the non-existence of instanton fermion zero modes

in that sector, due to boundary condition at infinity.

• Lepton Yukawa couplings

In this model perturbative Lepton Yukawa couplings are forbidden by the U(1)L ×
U(1)R symmetry (see table 1). Instantons however can generate superpotentials:

WY (leptons)r = e−SE3r (1, 2, 2̄)r(1, 2, 1)s(1, 1, 2̄)sΦ7t7t
s , r 6= s 6= t 6= r (4.33)

WY (leptons)′r = e−SE3r (1, 2, 2̄)r(1, 2, 1)s(1, 1, 2̄)tΦ7s7t , r 6= s 6= t 6= r (4.34)

From eqs. (3.11), (3.15) one obtains that the instanton action transforms like

SE3r −→ SE3r + 2ΛU(1)L
− 2ΛU(1)R

+
∑

s 6=r

(ΛU(1)s
1
− ΛU(1)s

2
) (4.35)
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so that the above superpotentials are indeed gauge invariant.

Note that the second superpotential involves non-diagonal D7s-D7t chiral fields. As

in the case of µ-terms , lepton Yukawa couplings are obtained if fields Φ7t7t
s and/or

Φ7s7t get webs, which may be triggered by D7 FI-terms. Note that the flavour

structure is then controlled both by the values of the instanton actions as well as

the singlet field insertions. In particular, if one wants to get non-negligible Yukawa

couplings the exponential suppression should be small and the inserted vevs of singlets

large. On the other hand this has to be done with care because otherwise all three

Higgs multiplets could get too large masses from the µ-terms. It should be interesting

to explore these phenomenological issues further.

A couple of comments are in order. Firstly, in the above discussion we have considered

the contribution of instantons E3r with r 6= s. It is equally easy to compute the contribu-

tion of instantons with r = s but different Chan-Paton actions for E3− and D7−branes,

i.e. for E3− and D7−branes wrapping the same 4-cycle but carrying different CP twist.

As we mentioned the contribution of those instantons gives rise to additional fermionic

zero modes. In the particular model under consideration that would imply some addi-

tional insertions of chiral fields (D7rD7r)r in the above couplings. We have refrained from

including those in order to make more clear the physics.

Secondly, we have assumed above that the E3-instanton only intersects the D3-branes

where the SM sits. Things could however be a bit more tricky upon compactification. For

instance, in simple toroidal orientifolds the E3-brane may be passing in addition through

the origin, which is fixed under the orientifold and orbifold actions. The local twisted

tadpoles at that point are Tr γθk,3 = −4, k = 1, 2, and require the presence of a non-trivial

set of D3-branes at such point. The simplest choice is 8 D3-branes with γθ,3 = (αI4, α
2I4)

and gauge group U(4). Then there would be extra fermion zero modes from D3−E3 sectors,

4-plets of U(4). This would mean that all operators discussed above would be multiplied by

factors of the form ǫabcd6
ab6cd involving U(4) antisymmetrics. Thus these operators should

also get large vevs if the superpotentials above are to be present. Again, such vevs can be

triggered by the FI-terms associated to the blow-up modes of these other singularities. We

skip this discussion, which would be very model dependent, and simply point out that there

may exist global compactifications where the E3-brane does not intersect other D3-brane

sectors, so this potential complication would be absent.

5. Instantons and non-supersymmetric C
3/ZN singularities

In the case of SUSY models the number of universal fermionic zero modes is often larger

than two, which implies that no non-perturbative charged open string operators are induced

by E3r instantons. As we mentioned in the case of orientifolds the number of zero modes

is the minimal set of two only for O(1) instantons. This places important constraints on

the possible non-perturbative effects on these models.

A drastic modification of this problem is to consider D3-brane systems at non-SUSY

orbifold singularities. In that case the orbifold projection removes all the universal fermion
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zero modes from the E3-E3 sector (in agreement with the fact that, since the geometry does

not preserve any supersymmetry, there are no Goldstinos on the E3-brane). Thus, there

are no extra θα fermionic zero modes. It is also important to point out that despite the

lack of supersymmetry there are E3-branes without tachyonic instabilities, which ensures

that they are good saddle points of the semiclassical theory.

On the other hand there will be in general charged fermionic zero modes coming from

open strings in the E3r −D3 sectors, coupling to 4d matter scalars. Integration over those

charged zero modes leads to insertions of 4d matter scalar fields, thus generating non-

perturbative scalar interactions. Such operators will be generated for any CP structure of

the instanton i.e., also for U(1) instantons and hence no orientifold projection is required.

Large classes of non-supersymmetric models may be constructed locating D3-branes at

non-SUSY ZN singularities (see ref. [22].).9 A subset of those models are free of tachyons

in the closed string sector,10 and also in the open string sector, and it is very easy to obtain

models with 3 quark-lepton generations. One expects that E3r instantons may yield new

non-perturbative couplings in these models.

Let us first summarize some facts about D3-branes on non-SUSY orbifold singularities

taken from [22]. We consider a stuck of D3-branes at a R
6/Γ singularity with Γ ⊂ SU(4)

where, for simplicity, we take Γ = ZN . The ZN action on fermions is given by the matrix in

eq. (A.1) and that on bosons by the matrix (A.2). For the CP twist matrices of D3-branes

we consider the general embedding given by the matrix

γθ,3 = diag (In0
, e2πi/N In1

, . . . , e2πi(N−1)/N InN−1
) (5.1)

where Ini
is the ni×ni unit matrix, and

∑

i ni = n. The matter spectrum in the 33 sector is

Vectors
∏N−1

i=0 U(ni)

Complex Scalars
∑3

r=1

∑N−1
i=0 (ni, ni−br

)

Fermions
∑4

α=1

∑N−1
i=0 (ni, ni+aα) (5.2)

Note that the spectrum is non-SUSY for a4 6= 0. One recovers N = 1 SUSY for b1+b2+b3 =

0, which implies a4 = 0.

In general there may be present D7r branes transverse to the r-th complex plane

locally. There may be CP matrices:

γθ,7r
= diag ( Iu0

, e2πi/N Iu1
, . . . , e2πi(N−1)/N IuN−1

) (5.3)

where we are assuming br = even. Then one finds matter fields (for br even):

br = even → Fermions
∑N−1

i=0 [ (ni, ui+ 1

2
br

) + (ui, ni+ 1

2
br

) ]

Complex Scalars
∑N−1

i=0 [ (ni, ui− 1

2
(bs+bt)

) + (ui, ni− 1

2
(bs+bt)

) ]
(5.4)

with r 6= s 6= t 6= r.

9Compact non-SUSY orientifolds were discussed in [45].
10In particular it is easy to check that ZN singularities with a1 = a2 = a3 = 1 and a4 = −3 (see the

appendix for notation) have no tachyons in any twisted sector.
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We now consider the presence of Euclidean E3r instantons passing through the sin-

gularity. As in the SUSY case there will be charged fermionic zero modes from E3r − D3

open strings. Those may be obtained from the corresponding fermionic zero modes from

open strings in the D7r − D3 sector. Let the CP twist matrix of the instanton be

γθ,E3r = diag (Ivr
0
, e2πi/N Ivr

1
, . . . , e2πi(N−1)/N Ivr

N−1
) (5.5)

Then there will be fermionic zero modes from E3r − D3 strings transforming like (for br

even):

(nc− br
2

, vc) + (vc, nc+ br
2

) (5.6)

These fermionic zero modes have couplings to scalars Φ in the D3−D3 sector (see eq. (5.2))

(nc− br
2

, vc) Φ(n
c+

br
2

,n
c−

br
2

) (vc, nc+ br
2

) (5.7)

Integration over the charged fermionic zero modes will give rise to determinant couplings

among the scalars Φ of the form

e−SE3r × det(Φ(n
c+

br
2

,n
c−

br
2

)) (5.8)

Note that this is a purely bosonic coupling. The coupling will be gauge invariant due

to the U(1) transformation of the euclidean action, as in the SUSY case. Indeed the

derivation of the U(1) gauge transformations described in section 4 applies also to the case

of non-SUSY singularities (and works in full analogy with the cancellation of mixed U(1)

anomalies in D3/D7-brane systems at non-supersymmetric orbifolds in [22], for reasons

already explained).

We thus see that Euclidean E3 instantons on this class of non-SUSY Abelian singu-

larities can give rise to non-perturbative purely bosonic couplings. Note that the fact that

universal fermionic zero modes are projected out in this class of non-SUSY singularities

makes that no fermionic operators are generated.

In section 3.5 of [22], an explicit semirealistic model based on a non-SUSY Z5 sin-

gularity is presented. It is a 3-generation left-right symmetric model with gauge group

U(3) × U(2)L × U(2)R × U(1)2 (before some U(1)’s get massive by combining with some

twisted RR fields). In that model one can see that e.g. an euclidean E3-brane U(1) instan-

ton with CP matrix = 1 gives rise to a B-term bilinear in the Higgs multiplet (2L, 2R), i.e.

a term of the form

e−Sins (Φ(2L,2R)Φ(2L,2R)) + h.c.. (5.9)

It is interesting to remark that this term gives an example of a scalar bilinear term which

is protected against perturbative loop corrections without supersymmetry. Indeed, loop

corrections can only give rise to (quadratically divergent) corrections to bilinears of the

form |Φ(2L,2R)|2 but not to terms such as (5.9) which are protected by the perturbatively

exact U(1) symmetry. Hence this term can be hierarchy small compared with the UV cutoff

in a completely natural way, with the small scale generated by the exponential suppression

of the instanton.
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6. Final comments

In this paper we have studied different aspects of the non-perturbative superpotentials in-

duced by E3 euclidean instantons in systems with D3/D7-branes sitting at Abelian orbifold

singularities. Much of the recent work on induced superpotentials from stringy instantons

has been formulated in the context of Type IIA orientifolds with charged matter fields at

intersecting D6-branes. The generation of superpotentials in this case requires D6-branes

wrapping rigid 3-cycles and O(1) orientifold projections. The construction of globally con-

sistent examples within this class has shown to be challenging. We have shown how in

the case of IIB with D3/D7-branes at singularities finding E3 instantons with the required

fermion zero mode content is much easier. Furthermore the couplings of the fermionic zero

modes to the chiral D = 4 fields, which are at the origin of the superpotentials, do not

require CFT amplitude computations but rather come directly given by the singularity

quiver diagrams. We have also sketched some of the aspects which appear in the case of

superpotentials induced by E3 instantons in systems of D3-branes sitting at general toric

singularities.

In the systems here studied both E3-D3 and E3-D7 fermionic zero modes may con-

tribute to the amplitudes. The transformation properties of the E3 instantons under the

U(1) symmetries of both D3 and D7-branes are nicely compensated by the charges of

the 4-D fields appearing in the induced operator. In this way operators perturbatively

forbidden by the U(1) symmetries are generated by the instantons.

Semirealistic models may be constructed using D3/D7 systems located at Abelian

orbifold singularities. We have shown how operators with potential phenomenological

interest can be generated in this context. Some Yukawa couplings are often perturbatively

forbidden in semirealistic models of branes at singularities. We have presented examples in

which forbidden lepton Yukawa couplings are generated due to instanton effects. We also

presented a global tadpole free SU(6) GUT example in which u-quark Yukawa couplings

are generated by these E3 euclidean instantons. In a more realistic three generations

SU(3) × SU(2)L × SU(2) × U(1)B−L example both a Higgs bilinear ( µ-term) and lepton

Yukawa couplings can be generated. In this example the generation of these terms will

typically require the insertion of vevs for D7 − D7 massless chiral fields.

The examples considered have an unbroken gauged U(1)B−L symmetry which forbids

the generation of Majorana neutrino masses, which is one of the possible interesting applica-

tions of instanton induced superpotentials. It would be interesting to look for semirealistic

models in which the U(1)B−L gauge boson becomes massive by combining with some closed

string scalar field so that Majorana neutrino masses could be generated.

Other possible application of these instanton induced couplings is to supersymmetry

breaking. Indeed, as remarked in [21] instanton generated bilinear couplings combined with

U(1) D-terms may lead to SUSY breaking a la Fayet (for fixed closed string moduli). We

have shown an explicit global tadpole free example of this class based on the Z3 compact

orientifold. More realistic models involving this SUSY breaking mechanism should be worth

studying. On the other hand we have found that certain non-perturbative scalar couplings

are expected to be generated in the case of systems of D3-branes sitting at (tachyon free)
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non-SUSY orbifold singularities. This includes the generation of exponentially suppressed

scalar bilinears which get no perturbative loop corrections.

One interesting feature of E3 instantons that we have described is how they can com-

bine with standard gauge instantons to provide new non-perturbative superpotentials. We

have shown how this effect described in [28] can take place even in simple toroidal orientifold

settings. We leave a full exploration of these novel effects for future work.
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A. Type IIB branes at Abelian orbifold singularities

To fix notation we review in this appendix the basic formalism to compute the spectrum

and interactions on the world-volume of D3- and D7-branes at R
6/ZN singularities [22].

Consider a set of n D3-branes at a R
6/Γ singularity with Γ ⊂ SU(4) where, for simplicity,

we take Γ = ZN . Before the projection, the world-volume field theory on the D3-branes

is a N = 4 supersymmetric U(n) gauge theory. In terms of component fields, the theory

contains U(n) gauge bosons, four adjoint fermions transforming in the 4 of the SU(4)R
N = 4 R-symmetry group, and six adjoint real scalar fields transforming in the 6.

The ZN action on fermions is given by a matrix

R4 = diag (e2πia1/N , e2πia2/N , e2πia3/N , e2πia4/N ) (A.1)

with a1 + a2 + a3 + a4 = 0 mod N . The action of ZN on scalars can be obtained from the

definition of the action on the 4, and it is given by the matrix

R6 = diag (e2πib1/N , e−2πib1/N , e2πib2/N , e−2πib2/N , e2πib3/N , e−2πib3/N ) (A.2)

with b1 = a2 + a3, b2 = a1 + a3, b3 = a1 + a2. Scalars can be complexified, the action on

them being then given by Resc = diag (e2πib1/N , e2πib2/N , e2πib3/N ). When b1 + b2 + b3 = 0,

we have a4 = 0 and the ZN action is in SU(3). This case corresponds to a supersymmetric

singularity. The fermions with α = 4 transforming in the adjoint representation of U(ni)

become gauginos, while the other fermions transform in the same bifundamental repre-

sentations as the complex scalars. The different fields fill out complete vector and chiral

multiplets of N = 1 supersymmetry.

The action of the ZN generator θ will be embedded on the Chan-Paton indices. In

order to be more specific we consider the general embedding given by the matrix

γθ,3 = diag (In0
, e2πi/N In1

, . . . , e2πi(N−1)/N InN−1
) (A.3)
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where Ini
is the ni × ni unit matrix, and

∑

i ni = n. Analogously for a D7r which is

transverse to the zr complex coordinate:

γθ,7 = diag (Iu0
, e2πi/N Iu1

, . . . , e2πi(N−1)/N IuN−1
) (A.4)

Then the chiral open string spectrum in the N = 1 case with a D7r transverse to the zr

complex coordinate is:

33 Vector mult.
∏N−1

i=0 U(ni)

Chiral mult.
∑N−1

i=0

∑3
s=1(ni, ni+as)

37r,7r3 Chiral mult.
∑N−1

i=0 [ (ni, ui− 1

2
ar

) + (ui, ni− 1

2
ar

) ] ar even
∑N−1

i=0 [ (ni, ui− 1

2
(ar+1)) + (ui, ni− 1

2
(ar+1)) ] ar odd

(A.5)

All chiral fields transform as bifundamentals. We denote Φr
i,i+as

the 33 chiral multiplet

in the representation (ni, ni+as). We also denote (assuming ar = even for concreteness)

Φ
(37r)

i,i− 1

2
ar

, Φ
(7r3)

i,i− 1

2
ar

the 37r and 7r3 chiral multiplets in the (ni, ui− 1

2
ar

), (ui, ni− 1

2
ar

). With

this notation, the interactions are encoded in the superpotential

W =

3
∑

r,s,t=1

ǫrst Tr (Φr
i,i+ar

Φs
i+ar ,i+ar+as

Φt
i+ar+as,i ) +

N−1
∑

i=0

Tr (Φ3
i,i+ar

Φ
(37r)

i+ar,i+ 1

2
ar

Φ
(7r3)

i+ 1

2
ar ,i

)

(A.6)

There are in general local twisted RR tadpoles. The conditions for their cancellation is
[

3
∏

r=1

2 sin(πkbr/N)

]

Tr γθk,3 +

3
∑

r=1

2 sin(πkbr/N) Tr γθk,7r
= 0 (A.7)

A.1 The C
3/Z3 case

Most of the examples mentioned in the main text make use of this singularity so that for

convenience we summarize here this case. The open string chiral spectrum is given by

33 U(n0) × U(n1) × U(n2)

3 [(n0, n1) + (n1, n2) + (n2, n0) ]

37r,7r3 (n0, u
r
1) + (n1, u

r
2) + (n2, u

r
0)+

+(ur
0, n1) + (ur

1, n2) + (ur
2, n0)

(A.8)

The superpotential terms are

W =
2
∑

i=0

3
∑

r,s,t=1

ǫrstTr (Φr
i,i+1Φ

s
i+1,i+2Φ

t
i+2,i) +

2
∑

i=0

3
∑

r=1

Tr (Φr
i,i+1Φ

37r

i+1,i+2Φ
7r3
i+2,i) (A.9)

eeqa In this C
3/Z3 singularity it is possible to consider the generic case of D7β-branes,

with world-volume defined by
∑

r βrYr = 0, which preserve the N = 1 supersymmetry of

the configuration for arbitrary complex βr. The 37β , 7β3 spectra are as above, but the

superpotential is W =
∑

i

∑

r βrTr (ΦrΦ37β
Φ7β3), with fields from a single mixed sector

coupling to 33 fields from all complex planes.

The twisted tadpole cancellation conditions are

Tr γθ,73
− Tr γθ,71

− Tr γθ,72
+ 3Tr γθ,3 = 0 (A.10)

These equations are equivalent to the non-abelian anomaly cancellation conditions.
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B. A Z7 compact example

All compact orientifold examples up to now were based on the Z3 orientifold. One can

see that there are instanton induced superpotentials in other ZN examples. Although

it has no phenomenological interest, let us briefly mention the case of the compact Z7

orientifold which is the next simplest compact orientifold with only O3-planes. The twist

θ is generated by v = 1
7(1, 2,−3). The twisted tadpole cancellation condition implies

Tr γθ = 32 cos π
7 cos 2π

7 cos 3π
7 = 4. Then locating all D3-branes at the origin with CP

matrix

γθ = diag (δI4, δ
2I4, δ̄

3I4, I4, δ̄I4, δ̄
2I4, δ

3I4, I4) (B.1)

twisted tadpoles cancel. Here δ = e2iπ/7 and δ̄ = δ∗. The gauge group is U(4)3 × SO(8)

and the matter spectrum is given by

(4, 1, 1, 8v) + (4, 4, 1, 1) + (6, 1, 1, 1) (B.2)

+(4, 4, 1, 1) + (1, 4, 4, 1) + (4, 1, 4, 1) (B.3)

where the underlining means one has to add permutations. Now there are E3r O(1)

instantons transverse to the r-th plane. They give rise to fermionic zero modes ηr
a which

transform like

η1 = (4, 1, 1, 1) ; η2 = (1, 4, 1, 1) ; η3 = (1, 1, 4, 1, 1) (B.4)

respectively for r = 1, 2, 3 labeling each complex plane. The main difference here with

the case of the Z3 orientifold is that each instanton E3r has zero modes transforming non-

trivially under a different gauge group. Each zero mode couples to a different antisymmetric

6-plet according to eq. (2.3). These are couplings of the form ηr
a6

ab
r ηr

b . Then mass terms of

the form
3
∑

r=1

e−SE3r ǫabcd 6r
ab 6r

cd (B.5)

are generated by the instanton. Indeed one can check the U(1)3 gauge invariance of this

operator.

C. E3-brane instantons in general toric singularities

In this appendix we provide the basic tools to generalize the analysis in the main text to

the computation of non-compact E3-brane instanton effects for systems of D3-branes at

general toric singularities. For simplicity (and due to limitations in the available tools) we

restrict to configurations with no D7-branes.

Many properties of the geometry of toric singularities, as well as of the gauge theories

on D3-branes located at them, can be studied using the so-called brane tilings or dimer

diagrams, see e.g. [46 – 48]. The structure of the gauge theory is encoded in a tiling of a

2-torus by a graph, with faces corresponding to gauge factors, edges to chiral multiplets

in bi-fundamental representations (under the gauge factors of the two faces separated by
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the edge), and nodes to superpotential couplings (among the chiral multiplets associated

to the edges ending on the node). Referring to these papers for details, let us simply

say that the corresponding gauge theories have a product gauge group
∏

U(ni) and a set

of bifundamental chiral multiplets Φ
aij

ij in the ( i, j), with the index aij distinguishing

possible multiplets in the same representation (in what follows we omit this index aij

for clarity). We focus on systems of D3-branes at non-orientifold toric singularities, but

the generalization of our discussion below to systems of D3-branes at orientifolded toric

singularities can be treated similarly, using the techniques in [19].

We would like to consider possible instanton effects in this kind of configuration. In-

stantons corresponding to euclidean branes wrapped on the collapsed cycles at the sin-

gularity (the analog of E(−1)-brane instantons in the orbifolds in the main text), can be

efficiently described using the dimer diagrams, and instanton effects for non-gauge instan-

tons (namely euclidean branes associated to a face / gauge factor not occupied by the

4d spacefilling branes) have been described (upon the introduction of orientifold actions)

in [19]. For this reason, and also to keep with the main line in this paper, we rather consider

instantons arising from E3-branes wrapped on non-compact 4-cycles passing through the

singularity.

The general problem of describing possible non-compact holomorphic 4-cycles in gen-

eral toric singularities was addressed in appendix B of [49]. The motivation there was

to wrap D7-branes on them to introduce flavors for the D3-brane gauge theory, but the

results can be applied to the description of the wrapped E3-brane instantons, and of the

coupling of their zero modes to the D3-brane fields. The main result from the analysis is

as follows. For each bi-fundamental Φij in the D3-brane gauge theory, there exist a non-

compact supersymmetric 4-cycle passing through the singularity, such that an E3-brane

instanton wrapping it leads to charged fermion zero modes αi, βj , charged in the i and

j of the U(ni) and U(nj) D3-brane gauge factors, and having couplings

∆SE3 = αi Φij βj (C.1)

with the D3-brane chiral multiplets. When the D3-brane gauge theory has several multi-

plets in the same gauge representation (labeled by aij = 1, . . . ,Kij), they all correspond to

E3-branes on the same 4-cycle, but carrying different world-volume gauge bundles (distin-

guished by a ZKij
Wilson line at infinity). This correspondence between 4d bi-fundamentals

and non-supersymmetric 4-cycles follows (as discussed in [49]) from the AdS/CFT corre-

spondence between di-baryonic operators and 3-cycles on the 5d horizon of the gravity dual

of the D3-brane gauge theory. Namely the dibaryons are constructed from chiral multiplets

by antisymmetrization of indices, and the 3-cycles are the bases of 4d cones describing the

non-compact 4-cycles.

It is easy to obtain the 4d effective vertex generated by one such D3-brane instanton.

Let us focus on the case ni = nj, otherwise the charged fermion zero modes are unpaired,

leading to a vanishing contribution (or rather, requiring the presence of additional inter-

sections of the E3-brane instanton with other branes in a globally consistent example, see
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footnote 8). The integration over the charged fermion zero modes leads to a superpotential

W ≃ e−T detΦij (C.2)

where T denotes the modulus associated to the 4-cycle in an eventual global embedding of

the local configuration.

It is easy to recover the results for orbifold singularities in this language. Similarly it is

possible to construct explicit models of D3-branes at such more general toric singularities,

and to describe the possible effects of E3-brane instantons in the field theory. We refrain

from this more extensive discussion, leaving it for future work.
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